F4 LOW LEVEL
GRAPHICS RELEASE GUIDE

REV 1

TERAK P/N 60-0050-001

COPYRIGHT (C) TERAK CORPORATION 1979
14405 NORTH SCOTTSDALE ROAD e SCOTTSDALE, ARIZONA 85254 « (602) 991-1580

F4 LOW LEVEL
GRAPHICS RELEASE GUIDE

REV 1

TERAK P/N 60-0050-001

COPYRIGHT (C) TERAK CORPORATION 1979
14405 NORTH SCOTTSDALE ROAD ¢ SCOTTSDALE, ARIZONA 85254 < (602) 991-1580

gt

Page 1

{ ol e e s e e ol kol ol ok ok oo e o o o oo s e e ol ol ol o sl oo o o sl el ol s ok oo sl
s e sk ek ok ok ok F4 LOW LEVEL sl e oo et sk el ok oo o ok
S sk sk ok R ook o GRAPHICS RELEASE GUIDE kbR kR kKR ERREY 1%

Bk kR R RRR R R Rk Rk kR Rk Rk bRk Rk PUD No, 60-PP50-0C 1%

LOW LEVEL GRAPHICS INTRODUCTION

The LOW LEVEL graphics routines provide primitive FORTRAN IV
8510a graphics programming support. The user of this lidrary
is required to deal with the graphics display page as a dot
array of 32¢ horizontal by 242 vertical dots. These routines
support turning dots on and off, testing dot status,
performing dot masks, and mapping display page characters.

A more sophisticated FORTRAN graphics support is provided with
an ACM SIGGRAPH CORE-79 compatibdle graphics library. This

lidrary is described ip another document, "F4 SIGGRAPE CORE-7¢
GRAPHICS Release Guide , TERAK pudlication number 60-8¢49-201.

RECOMMEMDED READING

To utilize the LOW LEVEL graphics lidbrary, the user should be
familiar with the general content of the PDP-11 FORTRAN
IV Language Reference Manual, the RT-11/RSTS/E FORTRAN IV
User’s Guide, and the Video Display and 24K Memory System

KW%~ (TERAK Pub No. 52-9@02-081). Particular attention should be

\ given to the information contained in Appendiz A, FORTRAN DATA

. REPRESENTATION of the User’s Guide and Section 2.6, ARRAYS, ef

the Language Reference Manual. This information provides the
basis for understanding the FORTRAN implementation.

Other tools such as IPEEK and IPOKE are described im the "RT-11
Advanced Programmer’s Guide , chapter 4.

DISPLAY PAGE ALLOCATION

The disprlay space may be a LOGICAL*1 or LOGICAL*2 array,
typically two dimensioned as:

LOGICAL*1 DISPLA(40,240)

Note that the first dimension of 40 times & bdits per bdyte is
320, the dot width of the display page. This appreach allows
use of the FORTRAN array subscript calculation facility to
address wvhole bytes, or 8 dot fields within the disrlay array.
These can be passed to sudbroutines as the base of a SUB-ARRAY
to be manipulated by the routines in this low level package.

This approach has twe difficulties. First, the array space
vill be duilt into the save image file, inflating its disk
N space. Second, FORTRAN will place arrays in the Root Section
ﬁwﬁ of the program. Hovever, the Display Space must be abdbove
\ absolute 29200 (OCT). If the Display Space is delow 2000¢,
the actual display will WRAP-AROUND to locations delow
160000.

Page

To .overcome this, the rrogram must te linked sucr tkat the
display array is loaded above 2¢@2¢. This may recuire use of
the linker’s "/P" switch to adjust the bottom of the prograz,
thus further inflating the disk space required for the
Frogram, and possibly wasting memory usage. This is the price
pald for a simpler grapkics programming tecknique.

FORTRAN programmers may use IPEEX and IPOXE to control the
contents of the VCR (VIDEO CONTROL REGISTER, 177744), and the
GAR (GRAPHIC ADDRESS REGISTFR, 17774F). For exarrle, to
completely blank the character display, and corxrletely urtrlank
the graphics display, write Octal 7¢ into the VCR as: '

CALL IPOKE("72,"177744)

Data may be written into the character display indeyperdéent cf
tke bdlanking of the character or grapkics zones, with two
exceptions. First if a monitor with the GT (glass teletyre)
emulator is being used, any data writter to the character
display through tke emulator (ITTOUR,IPRINT,WRITE,etc), then
the lower character zone will always by umblanked. If this
zone 1s blanked, and no data is written to the character
display, it will remain unblanked. If a monitor with the TK
(standard) emulator is being used, the character and gregphics
blanking set by the user program will dbe unaffected by
character writing. This allows a character display tc be
created, then unblanked for an "instantaneous” effect.

Second, a control-L (Form Feed, Octal 14) character written tc¢
any emulator will clear the character display, blank the
entire graphics display, and unblank the entire character
display. The graphics display buffer and the contents of thre
GAR will not be affected.

See V3b Release Notes for more information on the Conscle
Enulator.

SPECIAL DISPLAY PAGE CONSIDERATIONS

If the user decides to utilize the "free” memory area between
the tor of their prograc and the boteoz of the RT-11 monitor
as the graphics display rage, then the function 1GETSF can be
used. (See RT-11 Advanced Programmer’s Guide, chapter 4, tcr
IGETSP details). The LOW LEVEL routines must be modified to
use tre variabdle argument in the calling sequence as an
indirect pointer to the graphics display rage. The LOW LEVEL
grarhics library has also been provided in source form to
allow the user to make such modifications, as desired.

Low LEVEL GRAPEICS OVERVIEV.

SETBIT and CLRBIT are used to set and clear individual dots in
the display space. Note that the bit offset argument can be any
value...its range ies not restricted. This allows its working
range to be @ to 319 (DEC) to address the horizontal position

of a dot. The routines work on a sub-array, so the second
subscript of the integer argument addresses 1 to 242 (DEC)

rows of dots in the display space.

Page

The following examples show some methods for turning on the
33°rd dot in the 97°th row. No particular way is recommended
above any other. The choice of method depends upon the
preference of the user and the aprlication. The following are
examples only and do not imply that there are not other
methods for accomplishing the same result.

Method # 1
LOGICAL*1 DISPLA(42,240)
LOGICAL*2 COL,RO¥
LOGICAL*2 2,0
COL = 33
ROW = 97
A =1+ COL/E

0 = MOD(COL,8)
CALL SETRIT (DISPLA(A,ROW),0)

Method # 2

LOGICAL*1 DISPLA(42,24C)
LOGICAL*2 COL,ROW

COL = 33

ROW = 97

CALL SETBIT (DISPLA(1,1), COL*ROW-1)

NOTE: This method is effective only if COL*ROW is less than
the maximum integer value 65535. Values greater than
this 1limit cause integer arithmetic overflow.
Utilizaton of this method should be limited to applica-
tions using no more than two zones.

Method # 3
LOGICAL*1 'DISPLA(4€,248) ,ROWS7 (42)
LOGICAL*2 COL,ROW
EOQUIVALENCE (ROWS7(1),DISPLA(1,97)
COL = 33
ROW = 97

CALL SETBIT (ROWS?,COL-1)

TSTBIT returns the state of an individual dot in the display
space. Its use is similar to SETBIT or CLREIT, with the

addition of a third argument which returns a zero or non zero
value.

(92]

Page

HIDF draws a vertical erasing line from the addressed dot to
the bottom of the display space. .This routine is used in the
LOW LEVEL graphics demonstration LOWDEM to erase hidden
lines rapidly. This is much faster than the same function
accomplished by calling CLRBIT from within a FORTRAN level
loop.

GRFPNT is a subroutine to print a literal string into the
Graprhic Display Space using 8 by 10 dot dlocks for each
character. This is dome by receiving a sub-array pointer
from the mainline code, and mapping an equivalerced array
onto the sequence of dot blocks as required. The location
argument is passed as: DISPLA(COLUMN, RO¥) where column is a
number from 1 to 40, addressing one of the 42 multifple of €
dot columns where characters can be placed by GRFPNT. GRFPNT
scans the literal string or logical*l array, and directs the
array pointer sequentially to the right. CAUTION: The R.E.
side of the Display Space will not wrap around cleanly, and
exceeding the Display space is not checked for.

GRFASC is called by GRFPNT to do the transfer of each character
block. The dot pattern is read from the writeable character
generator. Thus, if the character set has been modified,
GRFPNT/GRFASC will use the modified patterns.

ANDFOR, ORFOR, and XORFOR are simple routines to allow the
masking, overlaying, and toggling of dots in separate Display
Spaces.

LOW LEVEL GRAPHICS CALLING SEQUENCES
*% SETBIT *=*

Turns on (Sets) a dot at a specified offset from the LSE of
‘'variable A.

CALL SEQUENCE...
CALL SETBIT(4,0)
ARGUMENTS...

A Destination or source variabdle
should be a logical*1, integer*?
variadle or array element.

0 Offset in bits from LSB of A.
May be greater than 7 to address
a bit array. Range is not checked!
Should be a integer*2 variable only.
Note that Offset =0 -=> LSP of A.

*% CLRBIT **

Page

Turns off (clears) a dot at a specified offset from the LSB of

variable A.
CALL SEQUENCE...
CALL CLRBIT(A,0)
ARGUMENTS...

A

¥% TSTBIT **

Determines the status
LSB of variabdle A.

CALL SEQUENCE...
CALL TSTBIT(A,O,L)
ARGUMENTS...

A

Destination or source variabdle
should be a logical*l, integer*2
variadble or array element.

Offset in bits from LSR of 4.

May be greater thar 7 to address

a bit array. Range is not checked!
Should be a integer*2 variabdle only.
Note that Offset =¢ -> LSPE of A.

of a dot at a specified offset from the

Destination or source variabdle
Should be a logical*1l, integer*2
variable or array element.

Offset in bits from LSRR of A.

May bde greater than 7 to address

a bit array. Range 1s not checked!
Should be a integer*2 variadle only.
Note that Offset =2 -=> LSB of A.

Logical*2 variabdle to receive
logic of tested bit.

Page

®% FIDE **

Sudroutine to draw a vertical erasing line. It clears a dot in
variable A offset 0 and every 220th dot thereafter, N times

CALL SEQUENCE...
CALL EIDE(A,O,N)

ARGUMENTS...
A Destination or source variable
should be a logical*1l, integer*2
variable or array element.
0 Offset in bdbits from LSB of A. May bde
greater than 7 to address a bit array.
Range is not checked! Should be a
integer*2 variable only. Note that
Offset =@ -> LSE of A.
N . Count of numder of bdits to zar must bde
integer*2,
%%k AND %%

Places the logical "AND" of word at A onto the word at B.
CALL SEQUENCE...

CALL AND(A,R)

ARGUMENTS...

AR Destination or source variabdle
must be a logical*2, integer*2
variadble or array element.

%% QR *%

Places the logical "OR" of the word at A onto the word at E.
CALL SEQUENCE...

CALL OR(4,3)
ARGUMENTS...

A,B Destination or source variabdle

must be a logical*2, integer*2
variadble or array element.

Fage

%% YOR **

Places the logical "XOR" of the word at A onto the word at B.
CALL SEQUENCE...
CALL XOR(A,R)
ARGUMENTS...
A,R Destination or source variable
must be a logical*2, integer*2
varlable or array element.
%% GRFASC *=*
Subroutine to extract am ASCII dot pattern from the
8510a writeabdble character generator, and transfer it into a
graphics display.
CALL SEQUENCE...

CALL GRFASC(A,B)

ARGUMENTS...
A Address of byte of row in graphics
display array to receive top row
of-character---the uprer left corner of
the 8 by 10 zone to receive the dot pattern.
B Address of byte containing the

character code of the pattern required.

*®% GRFPNT **

Sudbroutine to map a character string onto the grarphkics display
page. The source character string MUST be terminated with an
octal zero (@) character.

CALL SEQUENCE...

CALL GRFPNT(A,B)

ARGUMENTS...
A Address of byte of row in graphics
display array to receive top row
of character string.
B Source character string terminated with

an octal zero character. May de a quoted
literal string or a string vector.

Page

LOW LEVEL GRAPHICS LIBRARY

The dot graphics lidrary is supplied to the user on
distribution diskette, TERAK FORTRAN IV GRAPHICS LIBRARY™,
TERAK part numder (61-8009-093). The distridbution file is a
concatenated object file named "LOWGRF.0BJ". The LOW LEVEL
graphics library has also been included in the "READY TO USE"
system lidbrary provided on the distribution diskette TERAK
part numdber 61-0009-805.

If a different lidrary configuration other than that
distridbuted dby TERAK is develored by the user, care must de
taken in the order of lidrary linking. Refer to section 6 of
the. RT-11 FORTRAN IV V2,1 RELEASE GUIDE , TERAK part number
60-¢048-¢¢1 for a detailed discussion.

LOW LEVFL GRAPHICS DEMONSTRATION

A demonstrarion program utilizing the LOW LEVEL graphics
lidbrary is contained on the distridbution diskette ~FORTRAN IV
GRAPEICS DEMOS ', TERAK part number 61-00¢9-G@€. The program
is LOWDEM and exists as FORTRAN source and FT-11 executabdle
module. In addition a documentation file LOWDEM.DOC exists
which contatins the exact RT-11 command sequence used to
create the ready to run demonstration. A listing of the
program file and documentation file is also included in the
next section of this document. These files provide an examrle
of how to utilize the LOW LEVEL graphics libdbrary.

The demonstration program draws a sine mountain (2 =
SIN(X+Y)/(X+Y) on the graphics display. When the image on
the screen has been completed, the program will wait, echoing
anything typed. Typring a <return> allows the rrogram to exit
back to the RT-11 monitor.

OO0

Page

LOW LEVEL DEMONSTRATION LISTINGS

REAL*4 1(69,69), OLDFUN, LATRL, OLDLAT, FUNC
INTEGER*2 DSPLYI(ZG 24@)

INTEGER*2 DSPLY2(20 240)

DATA P1/3.1415926/

DATA ALPHA/.3000/ IRIGHET AXIS ANGLE ABOVE LEVEL
DATA GAMMA/.6900/ ILEFT AXIS ANGLE ABOVE LEVEL
DATA XGAIN/2.5/

DATA YGAIN/2.5/

DATA ZGAIN/1.1/

DATA XORG/150./

DATA ZO0RG/20@./

CSA = XGAIN*COS(ALPEA)

CSG = YGAIN*COS(GAMMA)

SNA = XGAIN*SIN(ALPHA)

SNG = YGAIN*SIN(GAMMA)

GRIND OUT FUNCTION BEFORE STARTING DISPLAY

CALL ITTOUR(14) ICLEAR TEE SCREEN

CALL ITTOUR(’.’) ITELL HIM WE’RE WORKING
Do 10, 1Y = 1, 69

X = (IX-35)*7 ,%P1/69. !X RANGES += 7 PI
= (1Y-35)*7.%P1/69. !Y RANGES +- 7 PI
22 = 1.

22 = 2Z*SIN(Y)/Y |,
2(I1X,1Y)=100 . *%22*ZGAIN

CONTINUE
DO 20 J=1,24¢
DSPLY1(1 J) = g

CALL IPOKE(177740 ,1ADDR(DSPLY(1,1))) ISET DISFLAY POINTER
CALL IPOKE(" 177744. "ng) ITURN ON DISPLAY
DO 50 IX = 69,1,-2 IBACK TO FRONT

(]

OLDLAT = IFIRST TIME FLAG
K=20 .
DO 5S¢ 1Y = 1,69 ICONTOURS IN Y DIRECTION

Page 10

~ 20 FUNC = ZORG = (Z(IX,IT)+IX*SNA+IY*SNG)
, IF (FUNC .GT. 248.) FUNC = 240.
IF (FUNC .LT. 1.) FUNC = 1.
LATRL = XORG + (IX*CSA) - (IY*CSG)
IF (LATRL .GT. 320.) LATRL = 320.
IP (LATRL .LT. 1.) LATRL = 1.
IF (OLDLAT .NE. @.) GOTO 31 ITHIS IS FOR FIRST TIME
OLDLAT = LATRL
OLDFUN = FUNC

COMPUTE DISTANCE BETWEEN NEW POINT AND OLD

OO0

= (LATRL = OLDLAT)**2
(FUNC = OLDFUN)**2
SQRT(X+Y)
F (Y .EQ. ©.) GOTO 35 ICOVERS ERRORS AND FIRST TIME
(LATRL-OLDLAT)/Y INOTE...Y = NEGATIVE INCREMENT ‘
OLDLAT
X+ 7Y IDECREASE X
X +.5 IROUND TO WHOLE CONTOUR STE |
z = gunc ; (OLDFUN-FUNC) *(X-LATRL)/(OLDLAT-LATRL)
=177 + .
IF (K .EQ. I) GOTO 33
CALL HIDE(DSPLY1(1,J+1),1,240-J)
gALLlsETBIT(DSPLYl(l.J).I)
~ IF (X .GT. LATRL) GOTO 32
35 OLDLAT = LATRL
OLDFUN = FUNC
g CONTINUE
115 DO 12¢ I=1,20
DO 120 J=1,240

120 DSPLY2(1,J) = @
CALL IPOKE(177748 ,JADDR(DSPLY2(1,1))) ISET DISPLAY POINTER
CALL IPOKE(177744, 7¢) ITURN ON DISPLAY

€0 B 14 Dl D g 1 4 4 D

({]
(¢}

DO 15¢ IY = 69,1,~2 !BACK TO FRONT

OLDLAT = @ IFIRST TIME FLAG

K=20

DO 150 IX = 1,69 INOW CONTOURS IN X DIRECTION

Page 11

M 130 FUNC = ZORG - (Z(IX,IY)+IX*SNA+IY*SNG)

IF (FUNC .GT. 240.) FUNC = 240.

IF (FUNC .LT. 1.) FUNC = 1. ‘
LATRL = XORG + (IX*CSA) - (1Y*CSG)
IF (LATRL .GT. 328.) LATRL = 320.
IF (LATRL .LT. 1.) LATRL = 1.

IF (OLDLAT .NE. ©.) GOTO 131 ITHIS IS FOR FIRST TIME
OLDLAT = LATRL

OLDFUN = FUNC
COMPUTE DISTANCE BETWEEN NEW POINT AND OLD

X = (LATRL - OLDLAT)**2
Y = (FUNC - OLDFUN)*%*2
Y = SQRT(X+Y)
IF (Y .EQ. @.) GOTO 135 ICOVERS ERRORS AND FIRST TIME
Y = (LATRL-OLDLAT)/Y INOTE...Y = POSITIVE INCREMENT
X = OLDIAT
132 X=X+ Y 1INCREASE X
I =X +.5 IROUND TO WHOLE CONTOUR STEP
22 = gunc g (OLDFUN-FUNC)* (X-LATKL)/(OLDLAT~LATRL)
J =122 + .,
IF (K .EQ. I) GOTO 133
CALL EIDE(DSPLY2(1,J+1),I,240-J)
133 CALLISETBIT(DSPLYZ(l.J).I)
K =
IF (X .1LT. LATRL) GOTO 132
.25 OLDLAT = LATRL
OLDFUN = FUNC
& CONTINUE
20¢e DO 300 1=1,20
DO 3@8¢ J=1,240
20e CALL OR(DSPLY1(I,J),DSPLY2(I,J))
c STAY BERE UNTIL USER STRIKES ANY KEY THEN EXIT TO MONITOR
CALL IPOKE(177744, 77) IUNBLANK CEAR DISPLA AND GRAR DIAPLA
210 CALL GETSTR(5,I,1,K)
c TURN OFF THE GRAPHICS SPACE AND TURN ON THE CEARACTER SPACE
CALL IPOKE(177744, 97) '
END

Hooo

A
[

Page 12

ﬂmu#***##**#*******#****#***#********#******#************#*********##************
‘ R sk ok ook o ok o NOTES DESCRIBING THE CREATION Aol e s etk o ok e ok sk ok o
|k koo ko dokk PROCEDURE USED FOR "READY TO RUN™ deoksieokssio seokok ook sk s sk
| s st sk kol e e e e o e o LOW LEVEL GRAPHICS DEMO sk ok ol oo ol o ko stk o
§ e o o s o s s ok o ool oo o o o oo ol ol oo o el el o o o s ko sl oo ot o o sl e sk e e o o ko ek o
!
1LOWDEM.DOC
ICREATED 9-28-79 UPDATED 9-28-79
!
ITHE PURPOSE OF THE FILE IS TO DOCUMENT THE EXACT RT-11 V3F COMMANTD
! SEQUENCE USED TO CREATE THE LOW LEVEL GRAPEICS DEMO CONTAINED
! ON THE DISTRIBUTION DISKETTE, TERAK PART NUMBER 61-0829-306.
!
ITHIS COMMAND SEQUENCE MAKES USE OF THE "READY TO USE™ FORTRAN COMPILER ON
! DISTRIBUTION DISKETTE, TERAK PART NUMBER 61-02009-004
ITHIS COMMAND SEQUENCE MAKES USE OF THE READY TO USE" SYSTEM LIBRARY ON
! DISTRIBUTION DISEKETTE, TERAK PART NUMBER 61-£029-2¢5

!
I#% STEP #1 #* .

IPLACE THE "FORTRAN IV GRAPEICS DEMO”™ DISKETTE,
! TERAK PART NUMBER 61-8609-006,

! INTO QX1:

!

1%+ STEP #2 %% } 4
(™ "UACE_TEE "READY 70 USE" FORTRAN IV COMPILER DISKETTE,

, TERAK PART NUMBER 61-9009-004,

! INTO QX@:

!

1#% STEP #3 **

1BOOT THE COMPILER DISKETTE, QX@:.

H :

!

1¥% STEP #4 **

I1COMPILE THE FORTRAN SOURCE FOR THE LOW LEVEL GRAPHICS DEMO
R TORTRA

QX1:LOWDEM,QX1:LOWDEM=QX1:LOWDEM

!
1¥% STEP #5 **

;REMOVE TEE COMPILER DISKETTE IN QXO:

!
1%% STEP #6_** .

IPLACE TEE "READY 70 USE” SYSTEM LIBRARY DISKETTE,
! TERAK PART NUMBER 61-0009-085,

! INTO QX@:

Page 13

wmu ¢ STEP #7 **

15C0T THE SYSTEM LIBRARY DISKETTE, QX@:
L -
-
1%% STEP #8 %*
!L{NKKTBE COMPILED FORTRAN OBJECT WITH THE SYSTEM LIBRARY
R LIN
QX1:LOWDEM,QX1 :LOWDEM=QX1:LOWDEM
!
=== -
ITHE COMPILATION AND LINKING OF THE LOW LEVEL GRAPEICS DEMO IS COMPLETE
TEE FOLLQWING FILES_SHOULD NOW EXIST ON QX1:
(1)'LOVDEM.LST" » COMPILER LISTING
(2) LOWDEM.OBJ_ , COMPILER OBJECT
(3) _LOVDEM.MAP_ , LINKER MAP
(4) LOWDEM.SAV" , RT-11 EXECUTABLE MODULE

!

ITEE DEMONSTRATION CAN BE EXECUTED BY THE FOLLOWING RT-11 COMMAND SEQUENCF
SET USR SWAP ‘

RUN QX1:LOWDEM

!
§ 2% % 3 33k 3 o e e e ol e 3 3 ae o e e ale o o de abe ok ok ol o afe e e afe o o abe afe s e e e e o s o ok ok e e o ae s o e a3 3k ke o 3k s afe e e e o ool e o ok ol ek o sl s e ok

Skt sk o e s s o o o o ke o NOTES DESCRIBING THE CREATION ek ook e s ke s ke o e ok o
|k koo kkkkkk®x PROCEDURE USED FOR "READY TO USE™ dkoksiskakeokoteskokolotesdeotede sk oo e
§ ek e e e e 2 o ofe e o o ofe oo oo e o de ol ok LOW LEVEL GRAPHICS DEMO e e 2 e e e 3 3 30 3 e dkoie 3k ek e ok ek ok

ﬁwﬂ************************#***********#***

